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1. INTRODUCTION

The dynamics of a two-mass system connected with a sti!ness has been widely analyzed
[1, 2]. Usually, it is assumed that the property of the sti!ness is linear. For that case it is
evident that the motion is a combination of a translation and a vibration with only one
eigenfrequency in spite of the fact that the system has two degrees of freedom. In this paper
the problem of a two-mass system is extended: it is assumed that the sti!ness is non-linear.
The non-linearity is of a cubic type. The mathematical model of the system contains two
ordinary conjugate di!erential equations with cubic non-linearities.
Recently, some researchers have presented several techniques for solving analytically

a second order di!erential equation with various strong non-linearities. For instance, Yuste
and Bejarano [3] developed an elliptic Krylov}Bogolubov method with Jacobian elliptic
functions for solving a di!erential equation with cubic non-linearity. Coppola and Rand [4]
used symbolic computation to implement an averaging method with elliptic functions. An
averaging method using generalized harmonic functions for strongly non-linear oscillators
is presented in the paper of Xu and Cheung [5]. Belhaq and Lakrad [6] adopted the
multiple scales method for a class of autonomous strongly non-linear oscillators. The
elliptic-harmonic-balance method is used to study mixed parity non-linear oscillators [7].
In reference [8] the exact solutions for the hard singular non-linear oscillators are
determined. All the methods mentioned above have their own advantages for obtaining
approximate analytical solutions for a one-degree-of-freedom oscillator.
Using the previous-mentioned results some particular solutions of the di!erential

equation with complex functions describing the vibrations of a rotor which rotates with
a constant angular velocity are determined [9]. The mentioned di!erential equation is
obtained by introducing a complex de#ection function in the system of two di!erential
equations. The strong non-linear vibrations of the rotors with variable mass are described
with a di!erential equation with complex functions and analytically solved in reference
[10]. The harmonic balance method, the elliptic-Krylov}Bogolubov method and the
elliptic perturbation method [11] are extended for obtaining the approximate
solutions of the di!erential equation with complex functions and a strong cubic
non-linearity [12].
Based on the previous studies, the general analytical solution of a special type of two

coupled di!erential equations with strong cubic non-linearity is determined in this paper in
the closed form.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.



Figure 1. Model of the two-mass system with sti!ness.
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2. ANALYTICAL SOLUTION

Themodel of the system is shown in Figure 1. Twomasses,m
�
andm

�
, are connected with

a sti!ness whose linear coe$cient of rigidity is k
�
and the non-linear coe$cient is k

�
. The

system has two degrees of freedom. The generalized co-ordinates of the system are x and y.
The motion of the system is described by

m
�
xK#k

�
(x!y)#k

�
(x!y)�"0,

m
�
yK#k

�
(y!x)#k

�
(y!x)�"0, (1)

where () )),d�/dt�. The di!erential equations (1) represent a system of two coupled
non-linear di!erential equations with strong cubic non-linearities. The system of equations
(1) is now solved.
To simplify these equations introduce a new variable

X"y!x. (2)

The system of equations (1) transforms to

m
�
xK!k

�
X!k

�
X�"0,

m
�
(xK#XG )#k

�
X#k

�
X�"0. (3)

Eliminating the variable x a single second order non-linear di!erential equation is obtained:

�XG #k
�
X#k

�
X�"0, (4)

where the reduced mass � is given by

1

�
"

1

m
�

#

1

m
�

. (5)

The di!erential equation (4) represents a di!erential equation with strong cubic
non-linearity and its solution has the form of Jacobi elliptic functions (see references [3, 4].
The closed-form analytical solution is

X"A cn(�t#�, k�), (6)

where cn(�t#�, k�) is a Jacobian elliptic function [13], with the frequency parameter �:

��"

1

�
(k

�
#A�k

�
) (7)

and the modulus k�;

k�"

k
�
A�

2(k
�
#k

�
A�)
. (8)
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It is worth saying that the frequency of the function depends on the mass ratio �. The
modulus of the elliptic function does not depend on the mass ratio. A and � are the
unknown coe$cients.
Summarizing equations (3)

xK"!

1

�
XG , (9)

where

1

�
"

�
m

�

.

Two integrations of equation (9) gives

x"!

1

�
X#Bt#C, (10)

where B and C are constants of integrations.
Substituting equation (10) into equation (2) gives

y"X�1!
1

��#Bt#C. (11)

Using solution (6) with equations (7) and (8) the general solution of the system of equation
(1) is obtained as

x"!

A

�
cn (�t#�, k�)#Bt#C,

y"�1!
1

�� A cn (�t#�, k�)#Bt#C, (12)

where A, �, B and C are the unknown coe$cients which depend on the initial conditions.

3. CONNECTION BETWEEN THE INITIAL CONDITIONS AND THE PARAMETERS
OF THE SOLUTION

Now consider the initial conditions in general form:

x (0)"x
�
, y(0)"y

�
, xR (0)"xR

�
, yR (0)"yR

�
, (13)

where ( ) ),d/dt. Substituting equation (13) into equation (12) one obtains the following
four equations:

x
�
"!

A

�
cn (�, k�)#C,

y
�
"�1!

1

�� A cn (�, k�)#C,
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xR
�
"

A�
�
sn (�, k�) dn (�, k�)#B,

yR
�
"!�1!

1

��A� sn(�, k�) dn (�, k�)#B, (14)

where sn and dn are Jacobi elliptic functions [5].
Solving equations (14) gives

B"

1

�
[yR

�
#(�!1) xR

�
],

C"�1!
1

��x�#
1

�
y
�
,
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(y

�
!x

�
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�
!xR

�
)�����

k
�
#k

�
(y

�
!x

�
)�

, (15)

and � is the solution of the equation

sc (�, k�) dn (�, k�)"
1 (yR

�
!xR

�
)

� (y
�
!x

�
)
, (16)

where
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�
(yR

�
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�
)�

k
�
#k

�
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�
!x

�
)�
, (17)

k�"

k
�
(y

�
!x

�
)� [k

�
#k

�
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�
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�
)�]#�k

�
(yR

�
!xR
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�(yR
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!xR

�
)�

. (18)

The function sc"sn/cn is a Jacobi elliptic function [13]. Substituting equations (15)}(18)
into equation (12) the closed-form solution of system (1) is obtained. Analyzing the obtained
solutions it can be concluded that the motion of the masses contains the translation with the
constant velocity B and an oscillatory motion with a frequency � and period 4K (k�), where
K (k�) is the complete "rst order elliptic integral. This is shown by means of an example.

Example 1. Consider a two equal unit mass system (m
�
"m

�
"1) connected by a spring

with non-linear properties. The coe$cients of rigidity are k
�
"1 dyne/cm, k

�
"1 dyne/cm�.

For the initial conditions (in cm)

x
�
"0)5, xR

�
"0)5, y

�
"0)1, yR

�
"0)1. (19)

and according to equation (12) the solution of equations (1) is

x"!0)22743 cn(1)5678t#2)73, 0)1071)#0)3t#0)3,

y"0)22743 cn(1)5678t#2)73, 0)1071)#0)3t#0)3. (20)

The solutions (20) are plotted in Figure 2. It can be seen that the position of the masses
depends on the initial position (C"0)3 cm), initial velocity of translation (B"0)3 cm/s)
and the amplitude of vibrations (A

�
"0)22743 cm), its frequency (�"1)5678 s��) and

period of vibration (4K (0)1071)"6)4622).



Figure 2. x}t and y}t diagrams for the following initial conditions in cm: x(0)"0)5, x(0)"0)5, y (0)"0)1,
y(0)"0)1.
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3.1. SPECIAL INITIAL CONDITIONS

Very often the motion starts with zero velocity i.e.,

x (0)"x
�
, y (0)"y

�
, xR

�
"yR

�
"0. (21)

Then the coe$cients which depend on the initial conditions are

A"y
�
!x

�
, B"0, C"�1!

1

��x�#
y
�
�
, �"0, (22)

and the solutions of equation (1) are

x"

x
�
!y

�
�

cn (�t, k�)#�1!
1

��x�#

y
�
�
,

y"�1!
1

�� (y�!x
�
) cn (�t, k�)#�1!

1

��x�#
y
�
�
, (23)

where

��"

1

�
[k

�
#k

�
(y

�
!x

�
)�], (24)

k�"

k
�
(y

�
!x

�
)�

2[k
�
#k

�
(y

�
!x

�
)�]
. (25)

It means that the motion of both the masses is oscillatory. The masses vibrate around
a "xed position determined by the initial conditions, i.e.,

x
�
"y

�
"�1!

1

��x�#
y
�
�
. (26)

To illustrate the statement consider an example.
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Example 2. Consider the same model as in the previous example but with the following
initial conditions (in cm):

x
�
"0, xR

�
"0, y

�
"1, yR

�
"0. (27)

The motion of both the masses are according to equation (23)

x"�
�
[1!cn(2t, �

�
],

y"�
�
[1#cn(2t, �

�
]. (28)

The functions (28) are plotted in Figure 3. Both masses in the system have &&harmonic''
oscillatory motions with amplitude A

�
"0)5 cm, frequency �"2 s�� and period of

vibrations 4K (0)25)"6)743 around the "xed position (x
�
"y

�
"0)5 cm).

4. A STIFFNESS WITH PURE-CUBIC RIGIDITY

Consider the case when the spring which connects the masses has a rigidity which is
a pure non-linear function of de#ection of the masses. Then k

�
"0 and the coe$cient of the

cubic non-linearity is k
�
. The di!erential equations of motion are

m
�
xK#k

�
(x!y)�"0,

m
�
yK#k

�
(y!x)�"0. (29)

Using the suggested procedure the solution of equation (29) is a special case of equation (12)
and it is

x"!

A

�
cn (�t#�, 1/2)#Bt#C,

y"�1!
1

�� A cn (�t#�, 1/2)#Bt#C, (30)
Figure 3. x}t and y}t diagrams for the following initial conditions in cm: x(0)"0, x(0)"0, y(0)"1, y (0)"0.
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where the parameters of the elliptic function (7) and (8) are

k�"

1

2
, ��"

A�k
�

�
. (31)

The modulus of the elliptic function has a constant value. The period of vibrations is
constant and it is

4K(1/2)"7)4163 (32)

where K(1/2) is the complete elliptic integral of the "rst kind [6].

5. A LINEAR SPRING

Assume that the spring which connects the masses is a linear one.

m
�
xK#k

�
(x!y)"0,

m
�
yK#k

�
(y!x)"0. (33)

For k
�
"0 the parameters in relations (7) and (8) are

��"

k
�
�
, k�"0. (34)

The Jacobian elliptic function transforms to a harmonic function (see reference [14])

cn (�t#�, 0),cos(�t#�).

The modi"ed solutions (12) of the linear system are

x"!

A

�
cos(�t#�)#Bt#C,

y"�1!
1

�� A cos(�t#�)#Bt#C (35)

and are well known in the literature.

6. A SPRING WITH SOFT NON-LINEARITY

For the case when the non-linearity is soft the constant k
�
is negative and the di!erential

equations of motion are

m
�
xK#k

�
(x!y)!k

�
(x!y)�"0,

m
�
yK#k

�
(y!x)!k

�
(y!x)�"0. (36)

The general solution of the system is according to equation (12)

x"!

A

�
cn (�*t#�, k*�)#Bt#C,

y"�1!
1

�� A cn (�*t#�, k*�)#Bt#C, (37)
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where the coe$cients of the Jacobi elliptic function are

�*�"

1

�
(k

�
!A�k

�
), k*�"!

k
�
A�

2(k
�
!k

�
A�)
.

The solution is valid only for

k
�
!A�k

�
'0.

It means that the modulus of the elliptic function is negative. Using the transformation of
the elliptic function with a negative modulus to an elliptic function with a positive modulus
(see reference [14]) the general solution of the system (36) as

x"!

A

�
cd [p (�*t#�), k**�]#Bt#C,

y"�1!
1

�� A cd [p (�*t#�), k**�]#Bt#C, (38)

where

k**�"

k
�
A�

2k
�
!k

�
A�
, p"

2(k
�
!k

�
A�)

2k
�
!k

�
A�

(39)

and cd is a periodical Jacobi elliptic function [13] with period 4K (k**�). The motion has
the same properties as for the case of hard non-linearity (k

�
'0) which is discussed in this

paper.

7. CONCLUSIONS

It can be concluded that the motion of a two-mass system connected with a cubic
non-linear sti!ness, described with a system of two second order ordinary coupled
di!erential equations with strong cubic non-linearities, can be described analytically. There
exist the exact general solutions of this special type of di!erential equations in closed form.
It is evident that the motion of the masses is a combination of a translation and an
oscillatory motion. The type of motion is the same as for the case of linear sti!ness. The
di!erences between linear and non-linear connections are the following:

1. For the linear case the period of vibrations is constant. For the non-linear case it
depends on the coe$cient of non-linearity and the amplitude of vibrations i.e., on the initial
conditions.
2. The frequency of vibrations is constant for the linear case and depends on the initial

conditions for the non-linear case.
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